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One obtains an analytic solution for the axially quasistationary temperature prob- 

lem of fracture mechanics for the space with a disk-shaped crack. The solution 

is constructed for an arbitrary time interval of the action of the load, as opposed 

to [l] where an asymptotics has been obtained only for small intervals of time. 
The investigation of the growth mechanism of a crack under the conditions of 

a jump-like change of temperature has a great importance for the creation of 
the theoretical foundations of electric welding and for the evaluation of the rig- 
idity of welded seams and joints. 

1. We consider the axially symmetric state of stress of the unbounded space with a 
disk-shaped crack (circular in plane) (Fig. 1). We assume that at the part of the surface 

T 
of the crack (F < d) a- temperature T, 
arises at the initial instant, which remains 
constant in the sequel. 
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The problem of the determination of 
the axially symmetric temperature field 
reduces to solving the heat conduction 

equation p] 

i $+f&+;)T- 
1 aT 

---= 

x at 
o 

(1.1) 

in the domain z > 0 with the following 

boundary conditions: 

T(r,o,t)=T~~(t), r<a; 

aT 
-SF I z=o = 0, r>a (1.2) 

Fig. 1. 

Laplace-Carson transform with respect to time 
We rewrite (1. l), (1.2) by applying the 

T* (F, 0, P) = To* (P), r < a; z llzo = O, r>a (1.4) 

(1.3) 

The solution of (1.3), which is bounded at infinity, can be represented in the form 

104 
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T* (F, z) = j B (u) (d + f)-” eq (- z I/u2 - +) Jo (UF) & (1.5) 
0 

In order to satisfy conditions (1.4). we obtain for the determination of B (a) the dual 
integral equations 

IW)(c@ + $)-"'J,(uF)~u=T,*(~), r<a 
0 

, r>a 
0 

We seek the solution of (1.6) in the form 

B (a) = i cp (8 sin aEc&$ + Q. sin eta 
0 

Here Cp (E) is the unknown function and Q. is some constant to be determined. 
Taking into account the value of the integral [3] 

(1.6) 

(1.7) 

we can see that (1.7) satisfies identically the second of the dual equations (1.6). Substi- 
tuting (1.7) into the first of the equations (1.6) and interchanging the order of integrat- 
ion, we obtain 

We differentiate (1.9) with respect to F and we write this expression in the following 
form: 

(1.10) 

0 

For the derivation of the last equality we have made use of the known result [3] 
00 

s Jr (ur) sin aE da= 
EF-’ (F’ - E’)-‘/z, 4 < r 

0 0 E>r 
Considering (1.10) as Schlb’milch’s equation [4], we find its solution in the form 

(1.11) 
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Thus, for the determination of cp (E) we have obtained a Fredholm integral equation 
of the second kind with a symmetric kernel. In order to find an approximate solution of 
this equation we make use of the following approximation: 

(1.12) 

This sort of ideas, related with the construction of approximate solutions as a result 
of the approximation of the kernel, has been developed by Koiter f51. 

In Fig. 2 we have represented the function Y (E) = 1 - E (1 -k E2)-“* (a = 

l.0 

0.8 

L?6 

0.4 

0.2 

= HfPW (C urve 1) and its approxima- 
tions for different values of A ,, and b2. 
The curves 2-4 correspond to 

0.5 
2 - Y(E) = 4” + 6.66 

3 - Y (E) = &_TO.~ 

0.5 
4 - Y (U = f42 + 6.5 

For the validity of this approxiamtion for 
p 4 oo we will take in what follows 
A O = b2 = ‘I2 (Curve 4). Making use of 

CI 1 2 1 
(1.12) we obtain an approximate expression 

Rg. 2. 
for the kernel of Eq. (1.11) 

m 

s 
0 

11 _a(~$+ 242)~Vz] .yinaTsinaF,da zq2 i (a" + q2)-l sinaz sihatda= 

=+cqsh(oq)exp (-+‘q), (1.13) 

Thus, Eq, (1.11) obtains the form 
(1.14) 

~(~)=q[~E’5~(~)sh(rq)~~+sh(Sq)~rp(r)e-~9dr+Qo~qsh(Eq)]t 4<= 
8 

The solution of (1.14), satisfying the condition cp (0) = 0 is obtained in the form 

‘p(E) = +$s (1.15) 

Substituting (1.15) into (1.7), we find 
(I 

B(a)= *& sin aEdE + Q. sin aa (1.9 
0 

We determine the distribution of the temperature in the plane by the formula (1.5) and 
by making use of the expression (1.16) 

T* (F, 0) = 5 B (a) (ci” i- 2q2)-“’ Jo (ar) da 
0 

z -$$ j E r (a” + 2q2)+ Jo (ar) x 
0 
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x sin aE &t@+ Q. 5 (aa + 2q2)-?/-Jo (ar) sin aa d& = 
0 

Here 

P (r, E) = f (a” + 2q2)+J0 (ar) sin at da (1.18) 
0 

For the computation of the last integral we consider the expression 

dP (r$E) 
df 

= 5 (a” + 2qyk%J, (ar) cosat da= 
0 

= -‘y [ 1 - a (aa + 2qa)-‘Iz] Jo (ar) cos aEda + h (r2 - E2)+ (1.19) 
0 

h= 
I 

LE<r 

%E>r 

Introducing the approximation (1.12) for A o = b2 = ‘12 into the first term of (1.12) 
we have 

dP (~9 F) 
dE 

z - @$ (a2 + q2)-l Jo (ar) cos aE da +h (r2 - E2)-“z = 

0 

=- q+e-W. (rq)- hq[sh(~q)~ch(rqcos~)dp -I- 

+ ch(Eq)Ish(rqcosv)dp _ 4 (r2 _ E2)-‘/*I (1.20) 

0 

(p = arccosE/r) 

Integrating the last equality with respect to E and taking into account that P (r, 0) = 
= a t we obtain 

P (r, E) z $- Jo (rq) e-tq - 

-h [ch (Eq) 5 ch (rq cos ‘p) dcp - sh (Eq) 5 sh (rq cos ‘P) dip] (1.21) 
0 0 

Substituting (1.21) into (1.17) and performing some transformations, we find 

T* (r, 0) z & [$- A., + (I- h,) 7 - (1 - h,) (1.22) 

r = arcsin + , PI = arccos + , 

From the equality (1.22) it follows that 

Qo = 4 (I+ a@ To* (~1 (1.23) 

Thus, the resultant expression for T* (r, 0, p) has the form 
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(1.24) 

T* (F, 0, P) = $ T,*(p)[~h, +(I - h,)~ -(I - h,)aq~~e-r~cos'+'d~~ 
0 

If To* @) = T, = coJ& then, returning to the original in (1.24), we obtain 

T(~,O,t)=$To{Ghl+(i-&)'I'- 

1 -- -- ( ‘coscp 
(2t+)% a 

- 1)“pP} (1.25) 

(t* = u-1 J&i) 

2, We proceed now to the determination of the state of stress of the unbounded space, 
situated under the action of the temperature field (1.25). It is known l2], that in the 

quasistationary case the elastic potential @ satisfies the equation 

Here 

i+v 
m=l-_vaT 

and oT is the coefficient of linear eXpaII.SiO& 

The displacements and the stresses in the space are determined by the formulas 

U” = a@/aF, w” = &D/a2 (2.2) 

ozL- = - 26 ( 
aw 1 i3-P 
-+r ar a+ --, 1 

z r,“=2G$$- (2.3) 

From the symmetry of the state of stress it follows that z,, = 0 for z = 0, and there- 
fore the solution of Eq. (2.1) must satisfy the condition 

ao, 
z- I .?=o = 

0 (2.4) 

Taking into account (1.5) and (2.4) we find 

m. (F, Z, Jl) = -y f B (a) [a-le-ar - (a" + 2~2)-'1~e-~(a'+2q')-"'] J,(ar)da (2.5) 
0” 

Making use of the expression (2.5), we determine the normal stresses ai’) in the plane 

z=o 

oi”’ (F, 0,~) = - 2Gm $1 aB(a) [I - a(a2 + 2q2)-‘/~]J,(ar)& (2.6) 
” 

Making use of the approxiamtion (1.12) we transform (2.6) into the form 

~52) (F, 0, p) =: - Gm~a(aZfq2)-1B(a)~o(ar)da= -$T,*(p)Gm X 

0 a 

x [q2SE dE 
dS cr* 4) dg + (1 + aq) dsJ;* a lE_-J 

0 

(2.7) 

Here we have denoted 
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s (r, E) = 5 (a” + qZ)-l Jo (ur) co.9 c&kt 
0 

One can prove that 
dS (rl e, 

7= 
- + e-EsJ, (rq) + 
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(2.8) 

+h[chOq)~ch(rqcos~)dip--sh(~q)5sh(rqcosg)~~] (2.9) 
0 

Substituting (2.9) into (2.7) and performing the necessary transformations, we obtain the 
final expression for the normal stress o’,“’ (r, 0, p) 

a!“’ (r ,0, p) = - -$ T,* (p) Gm x 

1 

X L ‘+& + (I- h,)r - (1 - h,)aqeoq 5 (1 - +y%?T.lz] (2.10) 
aIt 

9. We consider in the plane z = 0 of the unbounded space a circular slit of radius 
rs (r~ > a). We construct the axially symmetric state of stress, satisfying the following 
conditions: 

r+) - 0 I% - , 2=0 (3.1) 
@ = _ (p) =, z=O, r<r,; z&)=0, Z=O, r>ro (3.2) 

We determine the components of the given state of stress in terms of the Love function 

with the formulas [S] 

(1) 2c a 
'c,, = r-- - 2~ ar [ 

(1 -Y)VZ-~](P1 

(1) - 2G a 
Qz --1---z II 

(2_._9V2 __& cpl 1 
uI(l) = 1 ~[2(1-v)vL&]~1 i-2v 

(3.3) 

Here 91 is a biharmonic function which can be represented in the form 

‘pl = 5 [C(a) + D (a) az] e+Jo (ar) da (3.4) 
0 

Making use of the condition (3.1). we obtain 

c (a) = 2vD (a) (3.5) 

Imposing the conditions (3.2). we arrive at the dual equations 

Lv 

s aD, (a) J, (co-) da = - 9 at”’ (r, 0, p), r <ro (3.6) 
0 
00 

ii 

D, (a) J, (ar) du = 0, r > ro (01 (a) = a2D (a)) 

The solution of the dual equations (3.6) is known PI. Therefore we bring the final result 
(1) in the determination of the normal stresses U, in the plane z = 0 
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Here 

(3.8) 

For the stresses O’:‘, which appears outside the circle r = rO,we obtain, according to 

(3.7), the expression 

G$” (r, 0, p) = - -x-- II, h) 
1 - 2v -r/-q + i tGzv : ;$L$ ’ s 

r>h>a (3.9) 

Substituting (2.10) into the formula (3.8). we find r 

(5 = arccosa/~) 

Obviously, the solution of the formulated problem can be represented in the form of 
the sum of the two states of stress co’irsidered above, so that in the lim.iting case the 
stress intensity factor at the top of the disk-shaped slit is 

Krc = lim f2n (r - ro) [Q? (r, 0, p) + a?) (r, 0, p)] = (4)’ ~To*(p)Gm~ 
r-w, 

If To* (p) = T, = const,then, returning in (3.11) to the original,we obtain 

(3.12) - 
h=$, T = 4s'ld~mT,K~,$G, E = arccos -$ 

In Fig. 1 we have represented in dimensionless coordinates, according to (3.12), the 
length of the crack as a function of temperature (corresponding to the loads in these 
problems) at different times. It turns out that for every value t* there exists some crit- 
ical value h = hi* of the ratio between the length of the crack and the length of the 
thermal “filling”, for which the infinite stresses are absent at the end of the crack (the 
vertical asymptote corresponds to the case K I = 0). Only in the case h> hi* does there 

occur a growth of the crack, having a Griffith character. We note that for t* >O the 

curves of this dependence tend sufficiently fast to the common asymptotic line (t* = 
=o, CO), practically running together with it already for t* = 10. For h - w we have 
a --f 0, which corresponds to the instantaneous pointwise application of the temperature 
T + 2n-'~-=lz. For h < hi* compression stresses arise and the growth of the crack does 
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not take place. In Fig. 3 we have represented the limiting length of the crack as func- 

al T=7 tion of time for ?? = const . For each --_--------------. -_ 
specific value of the temperature, the 

specification of the initial crack length 

&l < Ai0 will insure prevention of fracture 
for an arbitrary time range of service of 

I I I _ 
parts with a crack under the conditions of 

0 t:, I 2 t* such loading.’ 
“r 

Fig. 3. 
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